Robust multi-sensor generalized labeled multi-Bernoulli filter

نویسندگان

چکیده

This paper proposes an efficient and robust algorithm to estimate target trajectories with unknown detection profiles clutter rates using measurements from multiple sensors. In particular, we propose combine the multi-sensor Generalized Labeled Multi-Bernoulli (MS-GLMB) filter Cardinalized Probability Hypothesis Density (CPHD) filters rates. The probability is augmented filtering state space for joint estimation. Experimental results show that proposed exhibits near-optimal performance in sense it comparable optimal MS-GLMB operating true rate probability. More importantly, outperforms other studied when profile are time-variant. attributed ability of learn background parameters on-the-fly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalized Labeled Multi-Bernoulli Filter Implementation using Gibbs Sampling

This paper proposes an efficient implementation of the generalized labeled multi-Bernoulli (GLMB) filter by combining the prediction and update into a single step. In contrast to the original approach which involves separate truncations in the prediction and update steps, the proposed implementation requires only one single truncation for each iteration, which can be performed using a standard ...

متن کامل

A Generalized Labeled Multi-Bernoulli Filter with Object Spawning

Previous labeled random finite set filter developments use a motion model that only accounts for survival and birth. While such a model provides the means for a multi-object tracking filter such as the Generalized Labeled Multi-Bernoulli (GLMB) filter to capture object births and deaths in a wide variety of applications, it lacks the capability to capture spawned tracks and their lineages. In t...

متن کامل

Multi-Bernoulli filter and hybrid multi-Bernoulli CPHD filter for superpositional sensors

Superpositional sensor model can characterize the observations in many different applications such as radio frequency tomography, acoustic sensor network based tracking and wireless communications. In this paper we present two filters based on the random finite set (RFS) theory the multi-Bernoulli filter and its variant the hybrid multi-Bernoulli CPHD filter for superpositional sensors. We prov...

متن کامل

On multi-Bernoulli approximations to the Bayes multi-target filter

Mahler recently proposed the Multitarget Multi-Bernoulli (MeMBer) recursion as a tractable approximation to the Bayes multi-target recursion, and outlined a Gaussian mixture solution under linear Gaussian assumptions. These proposals are speculative in the sense that, to date, no implementations have been reported. In this paper, it is shown analytically that the MeMBer recursion has a signific...

متن کامل

Cardinality Balanced Multi-Target Multi-Bernoulli Filter with Error Compensation

The cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter developed recently has been proved an effective multi-target tracking (MTT) algorithm based on the random finite set (RFS) theory, and it can jointly estimate the number of targets and their states from a sequence of sensor measurement sets. However, because of the existence of systematic errors in sensor measurements, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Signal Processing

سال: 2022

ISSN: ['0165-1684', '1872-7557']

DOI: https://doi.org/10.1016/j.sigpro.2021.108368